1. Übung zur Experimentalphysik I

Biological Physics and Systems Biology, Universität zu Köln II. Phys. Institut, Universität zu Köln

Prof. Dr. T. Bollenbach M. Langenbach

Abgabe:

1. Übungsblatt Donnerstag, 27. April 2016

Aufgabe Nr.:	1	2	3	4	Summe
Points:	6	6	10	8	30
Points:					

Bitte das Aufgabenblatt mit abgeben. Namen und Gruppennummer eintragen. Nicht angegebene Namen oder Gruppen führen zu Abzug von einem Punkt.

Vorlesungsseite: http://bpsb.uni-koeln.de/

1. [6 Punkte] Einheiten und Präfixe

Drücken Sie die folgenden Werte in SI-Basiseinheiten ohne zusätzliche Präfixe aus. Geben Sie ggf. den (mathematisch) genauen Zahlenwert an und den physikalisch sinnvollen, der durch die Präzision des ursprünglichen Wertes angedeutet wird.

- a) $9 \cdot 10^{-21} \frac{\text{ng}}{\text{pm}^2 \cdot \text{fs}}$
- b) 31 $\frac{nK}{\mu d}$ (Hinweis: 1 d = 1 Tag)
- c) 0.016 $\frac{\text{mg}}{\mu\text{mol}}$ (Manchmal ist das (Dezimal-)Komma ein (Dezimal-)Punkt!)

Welche physikalischen Größen könnten diese Ausdrücke beschreiben?

2. [6 Punkte] Beschleunigung

Ein PKW hat auf trockener Straße eine Bremsbeschleunigung von 5,2 m/s². Wenn plötzlich ein Hindernis vor Ihnen auftaucht, benötigen Sie – im Normalfall – eine Reaktionszeit von t_R = 0,9 Sekunden. Dazu kommt eine Bremsschwellzeit von t_B = 0,2 Sekunden bis zur Entfaltung der Bremswirkung.

- a) (2 Punkte) Wie lange ist Ihre Bremsweg bei 70 km/h und bei 120 km/h bis zum völligen Stillstand des Wagens (ohne Crash)?
- b) (1 Punkt) Wie lange brauchen Sie, um das Auto von 120 km/h auf 60 km/h abzubremsen?

3. [10 Punkte] Zugfahrt

Ein Zug beginnt seine Fahrt vom Bahnhof A zur Zeit 12:47h, erreicht mit konstanter Beschleunigung nach 5min seine Reisegeschwindigkeit von 80km/h und bremst mit konstanter Verzögerung über einen Bremsweg von 2km, so dass er um 14:02h im Bahnhof B ankommt, wo die Fahrt endet.

- a) Wie weit ist es von Bahnhof A zu Bahnhof B?
- b) Skizzieren Sie das s(t)-, v(t)- und a(t)-Diagramm zwischen 12:00h und 15:00h. Durchgehende Skalen in den jeweiligen Diagrammen sind nicht nötig. Machen Sie alle angegebenen und von Ihnen evtl. errechneten Werte soweit wie möglich in allen Diagrammen kenntlich. Hinweis: Achten Sie auch auf in den Diagrammen auftretende Flächen! Welche Werte, die in den Diagrammen auftauchen, werden zur Lösung des ersten Aufgabenteils nicht benötigt?

4. [8 Punkte] Gaußsche Fehlerfortpflanzung

Hier ein Vorgriff auf Themen, die Ihnen später im Semester bzw. in anderen Vorlesungen wiederbegegnen und dort vertieft werden:

• Eine Funktion f hänge von verschiedenen Parametern p_1, p_2, \ldots, p_k ab, also $f(p_1, p_2, \ldots, p_k)$. Betrachtet man diese Parameter als Variablen, so kann man sogenannte partielle Ableitungen $\frac{\partial f}{\partial p_i}$ bilden, d.h. man betrachtet einen bestimmten Parameter als Variable und leitet danach wie gewohnt ab. Beispiel:

$$y = m \cdot x + b \quad \Rightarrow \quad \frac{\partial y}{\partial m} = x, \quad \frac{\partial y}{\partial x} = m, \quad \frac{\partial y}{\partial b} = 1.$$

• Der Wert einer Größe W hänge von mehreren Parametern ab, also W(x, y, z, ...). Sind die Messgrößen x, y, z usw. unabhängig voneinander mit zufälligen Messfehlern Δx , Δy , Δz usw., so ergibt sich der Fehler des abgeleiteten Wertes ΔW aus der sogenannten quadratischen Addition (Gaußsches Fehlerfortpflanzungsgesetz):

$$(\Delta W)^2 = \left(\frac{\partial W}{\partial x}\Delta x\right)^2 + \left(\frac{\partial W}{\partial y}\Delta y\right)^2 + \left(\frac{\partial W}{\partial z}\Delta z\right)^2 + \dots = \sum_i \left(\frac{\partial W}{\partial p_i}\Delta p_i\right)^2.$$

- a) Leiten Sie die Formeln für ΔW in den Fällen i) W = x + y und ii) $W = x \cdot y$. aus dem Gaußsches Fehlerfortpflanzungsgesetz ab.
- b) Leiten Sie die entsprechende Formel für iii) W=x/y ab. Wie vergleichen sich die Fälle ii) und iii) ?
- c) Leiten Sie die entsprechende Formel für den allgemeinen Fall iv) $W=x^a\cdot y^b$ ab. Wie erhält man die Fälle ii) und iii) daraus?

Hinweis: Mathematisch ist diese Aufgabe recht einfach. Die Herausforderung liegt hier woanders...